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Presentation Overview

• Background on transportation biofuel work 
performed by RTI for the Environmental 
Protection Agency (EPA)

• Description of selected resources and 
conversion technologies required to produce 
these biofuels

• Benefits/potential issues that may influence how 
transportation biofuels compete with fossil fuels
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Background on EPA Work

“Development of Input Data for Analyses of 
Potential Biofuels for Transportation”

Project for EPA’s Air Pollution Prevention 
and Control Division

• Stage 1: RTI identified biofuel technology 
pathways (other than hydrogen production) for 
EPA
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Technology Pathway 
Defined

• Input Resource (e.g., energy crops such as 
corn) 

• Conversion Technology (e.g., fermentation to 
ethanol using microbes)

• Energy Carrier (e.g., ethanol)

• Demand Technology (e.g., spark-ignition 
internal combustion engine)
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Biofuel Pathways Explored 
for EPA
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Background on EPA Work

“Development of Input Data for Analyses of 
Potential Biofuels for Transportation”

Project for EPA’s Air Pollution Prevention 
and Control Division

• Stage 1: RTI identified biofuel technology 
pathways (other than hydrogen production) for 
EPA

• Stage 2: RTI collected data on pathways for 
EPA to use in modeling applications 
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Data Collected for EPA

Conversion Technologies:
• Investment costs 
• Operating and maintenance costs
• Process efficiency
• Start year
• Technology lifetime 

Input Resources:
• Market prices
• Production costs
• Transportation costs
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EPA’s Modeling Efforts ⎯
MARKAL

• Data from literature will be fed into the MARKAL (Market 
Allocation) model

• The model analyzes energy, economic, and 
environmental data for various technology pathways

• The model allows for assessment of pathways when key 
parameters are changed (e.g., resource availability, 
regulations, technology stage of development) 

• MARKAL will help evaluate how alternative fuel 
technology pathways can compete over the long term 
(50 years) with fossil fuel production
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Pathway #1: 
Ethanol via Fermentation
• Commercially well-established—in practice since the late 

1970s
• Most common automotive biofuel conversion technology 

in the United States
• 7% of the U.S. corn crop used to produce 

~1%−2% of the total automotive fuel supply
• ~2 billion gallons of ethanol produced annually from corn 

starch in the United States 
(3.2 B gal/yr produced from sugarcane in Brazil)

• Typically blended with gasoline (e.g., E85)
• Approximately 150 stations in 23 U.S. states
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Ethanol via Fermentation –
Resource Inputs
Starch Crops
• Corn
• Barley
• Wheat

Cellulosic Crops
• Grasses
• Trees

Crop Residues
• Corn stover
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Ethanol via Fermentation 
with Dry-Milled Corn
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Ethanol via Fermentation 
with Corn Stover
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Ethanol via Fermentation
Investment Costs

McAloon
et al., 2000$1.1 M$27.9 M25 MCorn to Ethanol

McAloon
et al., 2000$5.4 M$136.1 M25 MCorn Stover to 

Ethanol

Lynd, 1996$0.9 M$268.4 M295 MCorn Stover to 
Ethanol

SourceNormalized Cost
(per M-gal of capacity)

Investment
Cost

Capacity
(gal/yr)

Facility Type
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Ethanol via Fermentation
Production Costs

$22.0 M/yr−$7.1 M/yr 
(DDGS)

$12.1 M/yr$17.0 M/yrCorn to Ethanol

$37.3 M/yr− $2.8 M/yr 
(Electricity)

$28 M/yr$12.1 M/yrCorn Stover to 
Ethanol

*Assumes a capacity of 25 M gal/yr of ethanol.
Source: McAloon et al. (2000)

TotalCoproduct 
Credits

Other 
Production 

Costs

Feedstock 
Costs

Pathway 
Type*
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Ethanol via Fermentation 
Benefits

• Coproduct credits can help offset costs
• Potential use of waste products as resource 

input
• Ethanol use can reduce air pollution (ozone)
• Ethanol use can reduce dependence on toxic 

octane boosters such as benzene, toluene, and 
xylene

• Ethanol is less explosive than gasoline during an 
accident
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Ethanol via Fermentation 
Potential Issues

• Food crops are currently used as a 
resource input (ethical issue)

• Question of whether input crops could 
ever sustain pathway as a primary fuel 
provider

• Conventional gasoline engines can only 
operate on gasoline/ethanol blends up to 
10% ethanol (E10)
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Pathway #2: Biodiesel via 
Transesterification

• Used at the commercial scale in Europe 
since the late 1980s

• 60M−80M-gallon dedicated capacity in 
United States

• 22 U.S. states have public biodiesel 
stations

• Stand-alone vs. vertically integrated 
facilities
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Biodiesel via Transesterification 
Resource Inputs

Vegetable Oils
• Soybean
• Rapeseed
• Canola

Waste Oils
• Yellow grease

Animal Fats
• Tallow
• Lard
• Poultry fat
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Biodiesel via Transesterification 
with Soybeans
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Biodiesel via Transesterification
Investment Costs

AIM-AG 
et al., 

No date

$1.4 M$ 18.8 M13 MStand-Alone Facility 
for Soybeans

AIM-AG 
et al., 

No date

$2.9 M$ 37.6 M13 MVertically Integrated 
Facility for Soybeans

USDA, 
2003b

$2.1 M$35 M16.5 MStand-Alone Facility 
for Vegetable Oil 
(Europe)

SourceNormalized Cost
(per M-gal of capacity)

Investment
Cost

Capacity
(gal/yr)

Facility Type
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Biodiesel via Transesterification
Production Costs

• Stand-alone (13 M gal/yr): $14.2 M in feedstock costs 
(soybeans oil) + $5.7 M in other processing costs = 
~$19.9 M/yr in production costs

• Stand-alone coproduct credit for glycerine of $7.4 M, so 
adjusted production costs are $12.5 M

• Vertically integrated facilities have higher operating costs 
than stand-alone because of added costs associated 
with seed crushing unit

• Vertically integrated facilities have additional coproduct 
credits (for meal and soapstock)

• One source indicated that production costs are 
potentially higher in Europe
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Biodiesel via Transesterification 
Benefits

• Coproduct credits can offset costs
• Potential use of waste products as 

resource input
• Biodiesel is generally compatible with 

current storage and handling infrastructure
• Safer to handle⎯less combustible and 

less toxic than petro-diesel 
• Reductions in most air pollutants
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Biodiesel via Transesterification 
Potential Issues

• Use of biodiesel blends (B20), and 
especially pure biodiesel (B100), may 
require some engine modification to 
prevent performance and maintenance 
issues

• Increases in nitrogen oxide emissions
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Pathway #3: Green Diesel 
via Fischer-Tropsch (F-T)

• Green diesel vs. biodiesel
• F-T process is used commercially to 

produce petroleum diesel from gasified 
coal or natural gas

• No commercial applications currently exist 
that use biosyngas

• The Netherlands is actively pursuing 
research in this area
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Green Diesel via F-T 
Resource Inputs

Woody Crops
• Poplar
• Willow

Wood Wastes/Residues

Fossil Inputs (F- T Diesel)
• Natural gas
• Coal
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Green Diesel via F-T 
with Poplar
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Green Diesel via F-T 
Investment/Production Costs

• Investment costs of $335 M for a ~29M-gal/yr plant
• Pretreatment, gasification, and gas-cleaning stages 

account for ~75% of total investment costs for an F-T 
plant with biomass gasification

• Feedstock costs (for poplar) of >$42 M/yr for a 
~29M-gal/yr plant 

• Other production costs of $22.2 M/yr to $23.9 M/yr for a 
~29M-gal/yr plant

• Electricity credits could offset production costs
• Over the short term, production costs for green diesel 

appear to be about four times the cost of petroleum 
diesel
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Green Diesel via F-T
Benefits

• Electricity as a coproduct
• Potential use of waste products as 

resource input
• Generally compatible with current storage 

and handling infrastructure
• Safer to handle⎯less combustible and 

less toxic than petro-diesel
• Reductions in most air pollutants
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Green Diesel via F-T 
Potential Issues

• Removing tar is currently the most critical 
step of the F-T pathway when using 
biosyngas

• Unproven commercially (stage-of-
development issues)

• F-T green diesel may prove to be more 
expensive than methanol or hydrogen
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Pathway #4: Methanol via 
Thermochemical Conversion
• Methanol (wood alcohol) as a chemical commodity vs. 

fuel
• Natural-gas-to-methanol (i.e., fossil fuel) plants well-

established commercially
• 90 natural-gas-to-methanol plants worldwide (annual 

capacity of more than 11 B gallons)
• 18 methanol production facilities in the United States, 

with an annual capacity of up to 2.6 B gallons
• Biomass-to-methanol plants not yet commercial
• One source predicts commercial-scale biomass plants 

online by 2010
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Methanol via Thermochemical 
Conversion

Woody Crops
• Poplar
• Willow

Wood Wastes/Residues

Fossil Inputs
• Natural gas
• Coal
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Methanol via Thermochemical 
Conversion with Poplar
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Methanol via Thermochemical 
Conv. – Investment/Prod. Costs

• Little cost data on biomass-to-methanol plants
• One source indicated capital costs of $15.4 M to 

$24 M for a plant with a capacity of 25−50 tons 
of methanol per day (depending on plant 
configuration)

• Capital costs are approximately 3 to 7 times 
higher than for natural-gas-to-methanol plants 

• No data found for production costs
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Methanol via Thermochemical 
Conversion – Benefits

• Electricity as a coproduct
• Potential use of waste products as 

resource input
• M85 vehicles produce 40% less CO and 

NOx vs. vehicles running on reformulated 
gasoline

• Methanol is less explosive than gasoline 
during an accident
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Methanol via Thermochemical 
Conversion – Potential Issues

• Biomass-to-methanol process is unproven 
commercially (stage-of-development 
issues)

• Methanol fuel is not currently in 
widespread use

• Expense associated with retrofitting 
refueling stations for methanol

• High levels of formaldehyde in emissions
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